Structural Changes in a 1,2²⁵-Azaphosphole/ Nitrilimine Cycloaddition

Kurt Polborn and Alfred Schmidpeter

Institut fu¨ r Anorganische Chemie der Ludwig-Maximilians-Universita¨t, Meiserstrasse 1, Institut fu¨ r Organische Chemie der Ludwig-Maximilians-Universita¨t, Karlstrasse 23, D-80333 Mu¨ nchen, Germany

Received 7 August 1998; revised 13 October 1998

ABSTRACT: *Diphenylnitrilimine adds to the phosphazene bond of the azaphosphole* **1***. A single-crystal X-ray investigation of the cycloadduct* **3** *shows a planar bicyclo[3.3.0]octane skeleton meridional to the trigonal bipyramidal phosphorus. The structural data are compared to those of the starting compound* **1***, to those of the trifluoroacetone adduct* **2***, and to the change from ideal tetrahedral to ideal tbp geometry.* © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10:243–245, 1999

PHOSPHAZENE CYCLOADDITIONS

 $1,2\lambda^5$ -Azaphospholes such as 1 contain a phosphazene unit as part of a five-membered ring. They show a reactivity considerably higher than that of acyclic, six-membered, or larger ring phosphazenes. The difference is best demonstrated by a variety of cycloaddition reactions of **1** and related compounds [1] and becomes visible in particular by the high stability of the cycloadducts of **1**. The difference can be explained by geometrical considerations [2]: The fivemembered ring necessitates a relatively small endocyclic angle at phosphorus (98.5° for 1, Table 1) meaning some distortion of the tetrahedral coordination in the starting compound. The two small endocyclic angles at phosphorus as a bridgehead of the bicyclo[3.2.0]heptane skeleton resulting from a $[2+2]$ cycloaddition of 1 or of the bicy-

FIGURE 1 Molecular structure of **3** in the crystal (thermal ellipsoids with 30% probability).

clo[3.3.0] octane skeleton resulting from a $[3+2]$ cycloaddition of **1**, however, fit well between axial and equatorial bonds of a trigonal bipyramidal five-coordinate phosphorus atom. For the $[2+2]$ ketone adduct **2**, the molecular structure is known from an Xray investigation, and the structural changes connected to the cycloaddition have been discussed [2]. Now we present the structure analysis (Table 3) of the nitrilimine adduct **3** [3] as an example of a $[3+2]$ cycloaddition.

Correspondence to: Alfred Schmidpeter $© 1999$ John Wiley & Sons, Inc.

TABLE 1 Relevant Bond Lengths [pm] and Angles [8] for **3** and for Comparison of the Corresponding Data of **2** and **1** [2]

	3	2	1 ^a
P1-N3	173.2(2)	168.4(3)	158.7(5)
P1-C6	181.3(2)	180.5(8)	176.7(7)
P1-C5	182.2(2)	181.2(6)	177.3(8)
$P1-N1b$	183.6(2)	181.1(3)	
P1-C4	189.8(2)	188.8(3)	180.4(5)
N1-N2	138.3(2)		
N1-C7	140.2(2)		
N1-C1	128.5(2)		
N3-C1	140.2(2)		
N3-C2	148.3(2)	147.2(5)	146.4(6)
C1-C13	148.9(3)		
$C2-C3$	152.6(3)	155.1(6)	155.7(7)
C ₂ -C ₂₅	154.3(3)	153.4(7)	154.8(8)
C ₂ -C ₁₉	154.6(3)	155.3(7)	153.4(7)
C3-C4	132.2(3)	133.8(5)	133.8(8)
C3-C31	149.4(3)	150.5(6)	149.3(7)
C4-C33	148.8(3)	148.8(7)	147.2(7)
N3-P1-C6	118.8(1)	122.8(2)	117.0(3)
N3-P1-C5	124.6(1)	125.8(3)	115.1(3)
C6-P1-C5	116.6(1)	109.9(3)	104.2(3)
N3-P1-N1 ^b	82.9(1)	74.2(1)	
$C6$ -P1-N1 ^b	95.7(1)	93.7(3)	
C5-P1-N1 ^b	93.5(1)	92.0(3)	
N3-P1-C4	85.0(1)	86.0(2)	98.5(3)
C6-P1-C4	92.4(1)	99.7(3)	110.3(3)
C5-P1-C4	91.3(1)	97.2(3)	112.1(3)
N1-P1-C4	167.6(1)	159.9(2)	
N2-N1-C7	114.8(2)		
N2-N1-P1	115.6(1)		
C7-N1-P1	129.5(1)		
C1-N2-N1	109.5(2)		
C1-N3-C2	123.9(2)	136.3(4)	
C1-N3-P1	115.0(1)	97.2(2)	
C2-N3-P1	121.0(1)	123.2(3)	111.5(3)
N2-C1-N3	116.1(2)		
N2-C1-C13	116.3(2)		
N3-C1-C13	127.6(2)		
N3-C2-C3	102.9(1)	101.2(3)	107.7(4)
N3-C2-C25	111.7(2)	110.0(4)	108.5(4)
C3-C2-C25	106.3(2)		
N3-C2-C19	110.3(2)	112.4(3)	111.3(4)
C3-C2-C19	109.5(2)		
C25-C2-C19	115.3(2)		
C4-C3-C31	123.5(2)	126.0(4)	122.8(5)
C4-C3-C2	116.2(2)	116.3(3)	114.6(4)
C31-C3-C2	120.4(2)	117.7(3)	122.6(5)
C3-C4-C33 C3-C4-P1	122.2(2)	125.3(4) 112.6(3)	125.7(3)
	114.3(2)		106.6(4)
C33-C4-P1	123.5(1)	122.0(3)	127.6(3)

^aAverage values of two independent molecules. ^bFor **2**: O in place of N1

TABLE 2 Structural Changes from the Azaphosphole **1** to Its Cycloadducts **2** and **3** and from Ideal Tetrahedral to Ideal Tbp Coordination

TABLE 3 Crystal Data and Structure Refinement for **3**

Additional information of the crystal structure determination are deposited at the Cambridge Crystallographic Data Center (CCDC 102625, E-mail: deposit@ccdc.cam.ac.uk).

MOLECULAR STRUCTURE OF **3**

The chemical shift $\delta^{31}P = -62.4$ [3] clearly indicates the pentacoordination of phosphorus in **3**, and the 1H NMR spectroscopic equivalence of the two *P*methyl groups [3] point to a meridional placement of the bicyclic system in a trigonal bipyramidal coordination of phosphorus. This is confirmed by the X-ray structure analysis (Figure 1).

The bicyclic system is planar: The sum of angles (Table 1) in the azaphosphole ring is 539.4° , and in the triazaphosphole ring is 539.1° ; the sum of angles at the bridgehead N3 is 359.9° . Both endocyclic angles at the bridgehead $P1$ are smaller than 90° , and their sum of 167.9° is equal to the diaxial angle 167.6°. The axis is bent in an "anti-Berry" mode (toward the anellating PN bond), and the angle between the exocyclic equatorial bonds in accord is smaller than 120° . The equatorial plane of the trigonal bipyramid is undistorted. As expected, the axial PN bond is somewhat longer (6%) than the equatorial.

COMPARISON TO THE STRUCTURES OF **1** *AND* **2**

In the course of the cycloaddition reactions, the azaphosphole **1** undergoes structural changes that generally are more pronounced for the nitrilimine adduct **3** than for the ketone adduct **2** (Tables 1 and 2).

The endocyclic angle N3-P1-C4 becomes in **3** still a bit smaller than in **2**, and this also applies to the other two angles that become axial-equatorial in the cycloadduct. The total angular reorganization for **3** is considerably larger than that for **2**; it is still smaller, however, than that from a perfect tetrahedral to a perfect tbp geometry (Table 2).

All the phosphorus bonds become longer when the coordination increases from 4 to 5, and they lengthen more in **3** than in **2**. As expected, this is most pronounced for the phosphazene bond P1–N3.

As it has been observed for **2**, the changes of the endocyclic angles in the azaphosphole ring from **1** to **3** also add up to zero.

CONCLUSION

 $1,2\lambda^5$ -Azaphospholes such as 1 generally give more stable cycloadducts than acyclic phosphazenes. In case of the $[2+2]$ cycloadduct 2 from 1 and a ketone, this was explained by the relatively small structural reorganization necessary in the addition reaction of **1**. The structure analysis of **3** now shows this explanation to hold also for the $[3+2]$ cycloadduct from **1** and a nitrilimine, although the structural changes relative to **1** are not as small in **3** as in **2**.

REFERENCES

- [1] von Criegern, T.; Polborn, K.; Schmidpeter, A. Heteroatom Chem, in press, and the references cited therein.
- [2] Sheldrick, W. S.; Schomburg, D.; Schmidpeter, A.; von Criegern, T. Chem Ber 1980, 113, 55.
- [3] Schmidpeter, A.; von Criegern, T. Chem Ber 1979, 112, 3472.